

Cambridge IGCSE[™]

CHEMISTRY 0620/21

Paper 2 Multiple Choice (Extended)

October/November 2022

45 minutes

You must answer on the multiple choice answer sheet.

You will need: Multiple choice answer sheet

Soft clean eraser

Soft pencil (type B or HB is recommended)

INSTRUCTIONS

There are **forty** questions on this paper. Answer **all** questions.

- For each question there are four possible answers **A**, **B**, **C** and **D**. Choose the **one** you consider correct and record your choice in soft pencil on the multiple choice answer sheet.
- Follow the instructions on the multiple choice answer sheet.
- Write in soft pencil.
- Write your name, centre number and candidate number on the multiple choice answer sheet in the spaces provided unless this has been done for you.
- Do not use correction fluid.
- Do not write on any bar codes.
- You may use a calculator.

INFORMATION

- The total mark for this paper is 40.
- Each correct answer will score one mark.
- Any rough working should be done on this question paper.
- The Periodic Table is printed in the question paper.

1 The diagram shows the changes of state between a solid, a liquid and a gas.

solid
$$\frac{1}{3}$$
 liquid $\frac{2}{4}$ gas

In which changes of state is energy being given out?

- **A** 1 and 2
- **B** 1 and 4
- **C** 2 and 3
- **D** 3 and 4

2 A coloured dye is separated by chromatography.

One component of the dye moves a distance of 13 cm and has an R_f value of 0.86.

Which distance did the solvent front move?

- **A** 6.6 cm
- **B** 11.9 cm
- **C** 15.1 cm
- **D** 21.6 cm

3 A mixture contains salt, sand and sulfur.

Salt dissolves in water but not in xylene.

Sulfur dissolves in xylene but not in water.

Sand does not dissolve in water or xylene.

What is the order of the processes used to separate the salt, the sand and the sulfur from the mixture?

- **A** add water \rightarrow filter \rightarrow add xylene to the filtrate \rightarrow filter
- **B** add water \rightarrow filter \rightarrow add xylene to the residue \rightarrow filter
- **C** add xylene \rightarrow filter \rightarrow add water to the filtrate \rightarrow filter
- **D** add xylene \rightarrow filter \rightarrow add xylene to the residue \rightarrow filter
- **4** Which statements about isotopes of the same element are correct?
 - 1 They are atoms which have the same chemical properties because they have the same number of electrons in their outer shell.
 - 2 They are atoms which have the same number of electrons and neutrons but different numbers of protons.
 - 3 They are atoms which have the same number of electrons and protons but different numbers of neutrons.
 - **A** 1 and 2
- **B** 1 and 3
- C 2 only
- **D** 3 only

© UCLES 2022

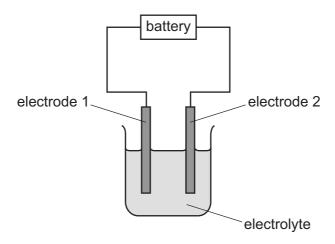
- **5** Which type of structure and bonding is present in an element that is malleable and conducts electricity?
 - A covalent molecular
 - **B** ionic lattice
 - C covalent macromolecular
 - **D** metallic lattice
- 6 Which statements about potassium bromide are correct?
 - 1 It has a high melting point.
 - 2 It dissolves in water.
 - 3 It conducts electricity when solid.
 - **A** 1 and 2
- **B** 1 and 3
- **C** 2 and 3
- **D** 3 only
- 7 Which substance has a similar structure to silicon(IV) oxide?
 - A carbon dioxide
 - **B** diamond
 - **C** graphite
 - **D** sodium oxide
- 8 Caffeine is a stimulant found in coffee.

caffeine

Which formula represents caffeine?

- **A** $C_7H_{10}N_4O_2$
- **B** $C_8H_{10}N_3O_2$
- $C C_8H_{10}N_4O_2$
- $D C_8H_{11}N_4O_2$

9 4.55 g of zinc is reacted with 50 cm³ of 2.25 mol/dm³ dilute hydrochloric acid.


The equation for the reaction is shown.

$$Zn + 2HCl \rightarrow ZnCl_2 + H_2$$

Which volume of hydrogen gas, at room temperature and pressure, is produced in the reaction?

- **A** $1.35\,\mathrm{dm}^3$
- **B** $1.67\,\mathrm{dm}^3$
- **C** $2.70\,\mathrm{dm}^3$
- **D** $3.34\,\mathrm{dm}^3$

10 In the electrolysis diagram, oxidation is occurring at electrode 1 and reduction at electrode 2.

Which row shows the directions of movement of the electrons in the external circuit and of the positive ions in the electrolyte?

	direction of movement of electrons in external circuit	direction of movement of positive ions in electrolyte
Α	1 → 2	1 → 2
В	$1 \rightarrow 2$	$2 \rightarrow 1$
С	$2 \rightarrow 1$	$1 \rightarrow 2$
D	$2 \rightarrow 1$	$2 \rightarrow 1$

11 When an acid is added to an alkali, the temperature of the reaction mixture rises.

Which words describe this reaction?

- A decomposition and endothermic
- **B** decomposition and exothermic
- **C** neutralisation and endothermic
- **D** neutralisation and exothermic

12 Some properties of four fuels are shown.

Which fuel is a gas at room temperature and makes two products when it burns in a plentiful supply of air?

	fuel formula		melting point /°C	boiling point /°C	
Α	hydrogen	H_2	-259	-253	
В	methane	CH₄	-182	-164	
С	octane	C ₈ H ₁₈	– 57	126	
D	wax	C ₃₁ H ₆₄	60	400	

13 Ethene can undergo complete combustion, as shown.

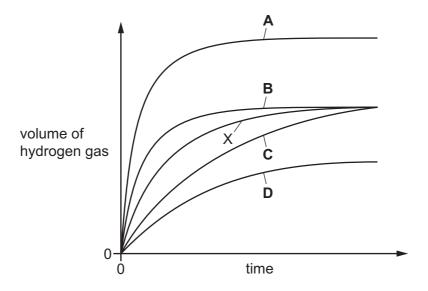
Some bond energies are given in the table.

bond	bond energy in kJ/mol
C=C	612
C–H	412
O–H	463
O=O	496

The energy change of the reaction is -1408 kJ/mol.

What is the bond energy of the C=O bond in CO₂?

A 454 kJ/mol **B** 673 kJ/mol **C** 826 kJ/mol **D** 1619 kJ/mol


14 A student adds excess zinc to dilute hydrochloric acid at 25 °C.

The hydrogen gas produced is collected and measured at room temperature and pressure.

The results are plotted and labelled as curve X on the graph.

The experiment is repeated at 50 °C with all other conditions remaining the same.

Which graph shows the results at 50 °C?

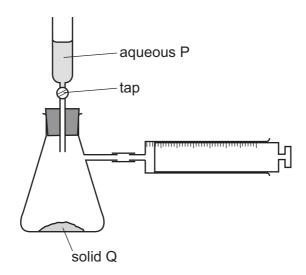
15 Dinitrogen tetroxide, N₂O₄, is converted into nitrogen dioxide, NO₂, in a reversible reaction.

$$N_2O_4(g) \rightleftharpoons 2NO_2(g)$$

The forward reaction is endothermic.

Which conditions give the highest equilibrium yield of nitrogen dioxide?

	pressure /atmospheres temperature	
A	2	high
В	2	low
С	50	high
D	50	low


16 When magnesium is heated with zinc oxide a reaction occurs.

The equation is shown.

$$Mg + ZnO \rightarrow MgO + Zn$$

Which substance is oxidised?

- **A** magnesium
- B magnesium oxide
- C zinc
- **D** zinc oxide
- **17** The diagram shows an experiment.

A small volume of aqueous P is poured on to solid Q and the tap of the funnel closed.

Which pairs of substances cause the syringe to fill with gas?

	HNO₃ and Mg	HC <i>l</i> and Cu	H ₂ SO ₄ and Na ₂ CO ₃
Α	✓	✓	✓
В	✓	✓	X
С	✓	X	✓
D	X	✓	✓

18 Ethanoic acid reacts with water to produce an acidic solution.

Which row describes the roles of ethanoic acid and water in this reaction?

	ethanoic acid	water
Α	accepts a proton	donates a proton
В	accepts an electron	donates an electron
С	donates a proton	accepts a proton
D	donates an electron	accepts an electron

19 Aqueous ammonium sulfate is made by reacting aqueous ammonia with dilute sulfuric acid.

How is solid ammonium sulfate obtained from the resulting solution?

- A crystallisation
- **B** distillation
- **C** filtration
- **D** solvent extraction

20 Carbon forms two oxides: carbon monoxide, CO, and carbon dioxide, CO₂.

Which row describes these two oxides?

	СО	CO ₂
Α	acidic	acidic
В	acidic	neutral
С	neutral	acidic
D	neutral	neutral

21 Group II elements show the same trends as Group I elements.

Which statement about elements in Group II is correct?

- **A** The melting point of barium is higher than the melting point of calcium.
- **B** Barium is more reactive than beryllium.
- **C** Strontium would not react with oxygen.
- **D** Magnesium is more dense than barium.

22 Some information about properties of Group I elements is shown.

element	melting point /°C	density in g/cm³
lithium	181	0.53
sodium	98	0.97
potassium	X	
rubidium	Υ	Z

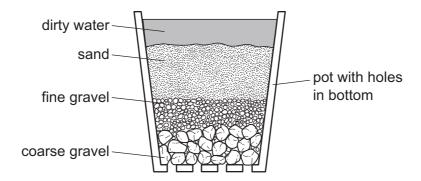
What are the values for X, Y and Z?

	Х	Y	Z
Α	63	252	0.26
В	63	39	0.26
С	39	63	1.53
D	63	39	1.53

- 23 Which statements describe properties of transition elements?
 - 1 They form coloured compounds.
 - 2 They have variable oxidation states.
 - 3 They have low densities.
 - 4 They are volatile.
 - **A** 1 and 2 **B** 1 and 4 **C** 2 and 3 **D** 3 and 4
- 24 Which statement about the extraction of aluminium by electrolysis is correct?
 - **A** Aluminium is extracted from its ore, cryolite.
 - **B** Aluminium is formed at the positive electrode.
 - **C** Bauxite is used to lower the temperature of the extraction process.
 - **D** Graphite is used for both the positive and negative electrodes.

25 Copper(II) nitrate and zinc carbonate are heated strongly in separate test-tubes.

Which row identifies the gases produced?

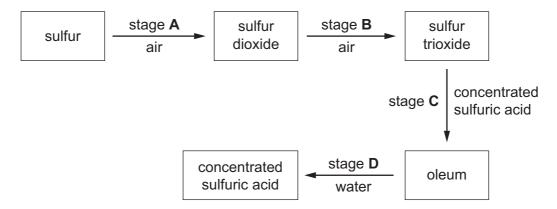

	copper(II) nitrate	zinc carbonate
Α	oxygen and nitrogen dioxide	carbon dioxide only
В	oxygen and nitrogen dioxide	carbon dioxide and oxygen
С	nitrogen dioxide only	carbon dioxide and oxygen
D	nitrogen dioxide only	carbon dioxide only

26 Iron from a blast furnace can be converted to steel.

Which statements about steel are correct?

- 1 Steel contains more carbon than the iron obtained from the blast furnace.
- 2 Steel is produced by blowing oxygen through the iron.
- 3 Calcium oxide is added to molten iron to remove basic oxides.
- **A** 1 and 2 **B** 1 and 3 **C** 2 and 3 **D** 2 only
- 27 Which metal is used to galvanise steel?
 - A copper
 - **B** lead
 - C tin
 - **D** zinc

28 The diagram shows a stage in the purification of dirty water.


Which process does this apparatus show?

- **A** chlorination
- **B** condensation
- **C** distillation
- **D** filtration
- 29 Which substance in polluted air damages stonework and kills trees?
 - A carbon dioxide
 - B carbon monoxide
 - C lead compounds
 - **D** sulfur dioxide
- **30** Which row explains why a high temperature and an iron catalyst are used in the manufacture of ammonia by the Haber process?

	high temperature	iron catalyst	
Α	increases the rate of the reaction	increases the equilibrium yield of ammonia	
В	increases the rate of the reaction	increases the rate of the reaction	
С	increases the equilibrium yield of ammonia	increases the equilibrium yield of ammonia	
D	increases the equilibrium yield of ammonia	increases the rate of the reaction	

31 The scheme shows four stages in the conversion of sulfur to sulfuric acid.

In which stage is a catalyst used?

- 32 Which element has an oxide that is used as a food preservative?
 - A helium
 - **B** hydrogen
 - **C** iron
 - **D** sulfur
- **33** Which substance gives off carbon dioxide on heating?
 - A lime
 - **B** limestone
 - **C** limewater
 - **D** slaked lime
- **34** Which formula represents ethanol?
 - A CH₃CH₃
- B CH₂CH₂
- C CH₃CH₂OH
- D CH₃COOH
- **35** Which statement about structural isomers is correct?
 - **A** They have the same structure but different reactivity.
 - **B** They have the same general formula but a different number of carbon atoms in their molecules.
 - **C** They have the same structure but different relative molecular masses.
 - **D** They have different structures but the same numbers of each type of atom.

36 V	Which for	mula is the	same in	methanol.	ethanol a	and prop	panol?
------	-----------	-------------	---------	-----------	-----------	----------	--------

- A empirical formula
- **B** general formula
- C molecular formula
- **D** structural formula
- 37 Ethene reacts with water under suitable conditions.

Which statement about this reaction is correct?

- **A** The product of this reaction has an M_r of 46.
- **B** The reaction produces two different products.
- **C** The reaction occurs when ethene gas is bubbled into cold water in the presence of an acid catalyst.
- **D** The reaction is a redox reaction.
- **38** Ethanoic acid is made by reacting ethanol with acidified potassium manganate(VII).

Which type of reaction occurs when ethanol reacts with acidified potassium manganate(VII)?

- A displacement
- **B** fermentation
- **C** oxidation
- **D** neutralisation

39 Which structure represents *Terylene*?

40 The equation shows the formation of a polymer called *Kevlar*.

$$n \text{ HOOC} \longrightarrow \text{COOH} + n \text{ H}_2\text{N} \longrightarrow \text{NH}_2$$

$$\downarrow -\text{H}_2\text{O}$$

$$\downarrow -\text{C} \longrightarrow \text{C} \longrightarrow \text{N} \longrightarrow \text{N} \longrightarrow \text{N}$$

$$\downarrow -\text{H}_2\text{N} \longrightarrow \text{N} \longrightarrow \text{N}$$

Which row describes Kevlar?

	how the polymer is formed	type of polymer
Α	addition polymerisation	polyamide
В	addition polymerisation	polyester
С	condensation polymerisation	polyamide
D	condensation polymerisation	polyester

The Periodic Table of Elements

	 \	² He	lium 4	10	<u>e</u>	90n	81	-	gon 10	36	۲	pton 75	'¥	é	non 31	36	٦	uop –			
	<i>></i>		he		_	- ``		_	ar	.,	_		-	_	xe 7		<u></u>	e e			
	₹			6	Щ	fluorine 19	17	Cl	chlorine 35.5	35	Ā	bromine 80	53	Н	iodine 127	85	Ą	astatine 			
	>			8	0	oxygen 16	16	S	sulfur 32	34	Se	selenium 79	52	Б	tellurium 128	84	Ъ	polonium —	116	^	livermorium -
	^			7	Z	nitrogen 14	15	凸	phosphorus 31	33	As	arsenic 75	51	Sp	antimony 122	83	Ξ	bismuth 209			
	≥			9	ပ	carbon 12	14	Si	silicon 28	32	Ge	germanium 73	50	Sn	tin 119	82	Pb	lead 207	114	Fl	flerovium —
	=			2	В	boron 11	13	Αl	aluminium 27	31	Ga	gallium 70	49	I	indium 115	81	11	thallium 204			
										30	Zu	zinc 65	48	g	cadmium 112	80	Нg	mercury 201	112	S	copernicium -
										29	D C	copper 64	47	Ag	silver 108	79	Au	gold 197	111	Rg	roentgenium -
Group										28	Z	nickel 59	46	Pq	palladium 106	78	귙	platinum 195	110	Ds	darmstadtium -
Gro										27	ပိ	cobalt 59	45	格	rhodium 103	77	Ι	iridium 192	109	M	meitnerium -
		- I	hydrogen 1							26	Ьe	iron 56	44	Ru	ruthenium 101	9/	SO	osmium 190	108	Hs	hassium -
										25	Mn	manganese 55	43	٦ ک	technetium -	75	Re	rhenium 186	107	Bh	bohrium —
					pol	ass				24	ပ်	chromium 52	42	Mo	molybdenum 96	74	≥	tungsten 184	106	Sg	seaborgium -
			Key	atomic number	atomic symbo	name relative atomic mass				23	>	vanadium 51	41	qN	niobium 93	73	Та	tantalum 181	105	Ор	dubnium -
					ato	rela				22	F	titanium 48	40	Zr	zirconium 91	72	Έ	hafnium 178	104	짪	rutherfordium -
										21	လွ	scandium 45	39	>	yttrium 89	57–71	lanthanoids		89–103	actinoids	
	=			4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40	38	Š	strontium 88	56	Ba	barium 137	88	Ra	radium
	_			8	:=	lithium 7	7	Na	sodium 23	19	¥	potassium 39	37	Rb	rubidium 85	55	Cs	caesium 133	87	Ŧ	francium -

	57	28	59	09	61	62	63	64	65	99	29	89	69	70	7.1
lanthanoids	Га	Ce	Ą	ΡN	Pm	Sm	En	В	Д	۵	웃	щ	Ш	Υb	P
	lanthanum 139	cerium 140	praseodymium 141	neodymium 144	promethium -	samarium 150	europium 152	gadolinium 157	terbium 159	dysprosium 163	holmium 165	erbium 167	thulium 169	ytterbium 173	lutetium 175
	88	06	91	92	93	94	98	96	26	86	66	100	101	102	103
actinoids	Ac	디	Ра	\supset	ď	Pu	Am	Cm	益	ర్	Es	Fm	Md	8 N	۲
	actinium	thorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium	lawrencium
	ı	232	231	238	ı	ı	ı	ı	ı	ı	ı	I	ı	ı	ı

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).