Question	Answer	Marks	AO Element	Notes	Guidance
1	89.6 (g)	1			
2(a)	moles N ₂ = (144/24 =) 6	1			
2(b)	moles $NaN_3 = (6 \times 2/3 =) 4$	1			
2(c)	$M_{\rm r}$ NaN ₃ = 65	1			
2(d)	(4 × 65 =) 260	1			
3(a)	80	1			
3(b)	5	1			
3(c)	10	1			
3(d)	240	1			
4(a)	0.003	1			
4(b)	0.006	1			
4(c)	30	1			

Question	Answer	Marks	AO Element	Notes	Guidance
5	mol FeSO ₄ = 15.2/152 = 0.1(00)	3			
	expected mol of $Fe_2O_3 = 0.1/2$ = 0.05(00)) or actual mol of $Fe_2O_3 = 4.80/160$				
	= 0.03(00) percentage yield = 100 × 0.03(00)/0.05(00) = 60%				
6(a)	yellow	1			
6(b)	$0.2 \times 25/1000 =$ 5(.00) × 10 ⁻³ or 0.005(00) (mol)	4			
	$5(.00) \times 10^{-3} / 2 =$ 2.5(.0) × 10^{-3} or 0.0025(0) (mol)				
	$2.5(.0) \times 10^{-3} \times 1000/20 = 0.125 \text{ (mol/dm}^3\text{)}$				
	0.125 × 98 = 12.25 (g/dm3)				
7(a)	(Mol KOH =) 0.00125/ 1.25 × 10 ⁻³	1			
7(b)	(Mol H ₂ SO ₄ =) 0.000625/ 6.25 × 10 ⁻⁴	1			ecf from (a)

Answer	Marks	AO Element	Notes	Guidance
(Conc $H_2SO_4 =) 0.03125/$ 3.125 × 10^{-2} (mol/dm ³)	1			ecf from (b)
M1 repeat without indicator using same volumes	5			
M2 evaporate/heat/warm/oil/leave in sun				
M3 until most of the water is gone/some water left/saturation(point) / crystallisation point/evaporate some of the water				
M4 leave/(allow to) cool/allow to crystallise M5 details of drying				
the formula is P_4O_6 or (one mole of) $P_2O_3 = 110$ (g) (1) mass = 220 (g)	2			
mol of Y = $(0.060/24.0 =) 2.5 x$ 10^{-3} OR 0.0025	1			
Mr = $(0.095/2.5 \times 10^{-3} =) 38(.0)$ (1)	2			
	(Conc $H_2SO_4 =) 0.03125/3.125 \times 10^{-2} \text{ (mol/dm}^3)$ M1 repeat without indicator using same volumes M2 evaporate/heat/warm/oil/leave in sun M3 until most of the water is gone/some water left/saturation(point)/crystallisation point/evaporate some of the water M4 leave/(allow to) cool/allow to crystallise M5 details of drying the formula is P_4O_6 or (one mole of) $P_2O_3 = 110 \text{ (g) (1)}$ mass = 220 (g) mol of $\mathbf{Y} = (0.060/24.0 =) 2.5 \times 10^{-3}$ OR 0.0025 Mr = $(0.095/2.5 \times 10^{-3} =) 38(.0)$	(Conc $H_2SO_4 =) 0.03125/3.125 \times 10^{-2} \text{ (mol/dm}^3)$ M1 repeat without indicator using same volumes M2 evaporate/heat/warm/oil/leave in sun M3 until most of the water is gone/some water left/saturation(point)/crystallisation point/evaporate some of the water M4 leave/(allow to) cool/allow to crystallise M5 details of drying the formula is P_4O_6 or (one mole of) $P_2O_3 = 110 \text{ (g) (1)}$ mass = 220 (g) mol of $\mathbf{Y} = (0.060/24.0 =) 2.5 \times 10^{-3} \text{ OR } 0.0025$ Mr = $(0.095/2.5 \times 10^{-3} =) 38(.0)$	(Conc $H_2SO_4 =) 0.03125/3.125 \times 10^{-2} \text{ (mol/dm}^3)$ 1 M1 repeat without indicator using same volumes 5 M2 evaporate/heat/warm/oil/leave in sun 5 M3 until most of the water is gone/some water left/saturation(point)/crystallisation point/evaporate some of the water 6 M4 leave/(allow to) cool/allow to crystallise 6 M5 details of drying 2 2 of) $P_2O_3 = 110 \text{ (g) (1)}$ mass = 220 (g) 2 2 mol of $\mathbf{Y} = (0.060/24.0 =) 2.5 \times 10^{-3} \text{ OR } 0.0025$ 1 3 mol of $\mathbf{Y} = (0.095/2.5 \times 10^{-3} =) 38(.0)$ 2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Question	Answer	Marks	AO Element	Notes	Guidance
10	mass of O = 3.87 g - 1.68 g = 2.19 (g) (1)	4			
	mol of P = 1.68/31 OR 0.054				
	AND				
	mol of O = 2.19/16 OR 0.13 (1)				
	ratio of P:O = 1:2.5 (1)				
	whole number ratio AND P ₂ O ₅ (1)				
11	60/12:13.33/1:26.67/16 or evaluation 5:13.33:1.67 or 3:8:1 (1)	2			
	C ₃ H ₈ O (1)				
12	$(C_2H_4O =) 44 (1)$	2			
	C ₄ H ₈ O ₂ (1)				
13	D - 0.001 mol	1			
14	D - C ₂ H ₄ O ₂	1			
15	C - 0.125 mol/dm ³	1			

Question	Answer	Marks	AO Element	Notes	Guidance
16(a)	M1 Action of heat or catalyst or thermal decomposition (on an alkane)	1		ignore steam ignore pressure	
	M2 Long-chained molecules or alkanes form smaller molecules or forms smaller alkenes (or alkanes)	1		not smaller fractions	
16(b)	C ₁₀ H ₂₂	1			
17(a)	C₄H ₈ only CH ₂	2		Allow C ₁ H ₂	
17(b)	Any unambiguous structural formula of methyl cyclopropane or but-1-ene or but-2-ene or methyl propene	1			
17(c)	M1 same molecular formula	1			

Question	Answer	Marks	AO Element	Notes	Guidance
	M2 different structural formulae or different structures or different arrangement of atoms	1			
17(d)	If 'No': one an alkane, the other an alkene or one is saturated / has single bonds, the other is unsaturated / has a double bond If 'yes' both alkanes or both saturated	1		ignore: references to the functional group ignore: references to the functional group	
18	number of moles of ethanoic acid = 0.1	1			
	number of moles of ethanol = 0.12(0)	1			
	the limiting reagent is ethanoic acid	1			
	number of moles of ethyl ethanoate formed = 0.1	1			

Question	Answer	Marks	AO Element	Notes	Guidance
	maximum yield of ethyl ethanoate is 8.8 g	1			
19(a)(i)	rate at t ₂ less than at t ₁ or the rate decreases	1			
	rate at t ₃ zero / reaction stopped	1			
19(a)(ii)	rate at t ₂ less than at t ₁ because concentration of hydrogen peroxide is less at t ₂ or concentration of hydrogen peroxide is decreasing.	1			
	(rate at t ₃ zero / reaction stopped because) hydrogen peroxide is used up	1			
19(b)(i)	steeper and must come from the origin	1			
	final volumes the same	1			

- Mark Scheme

Question	Answer	Marks	AO Element	Notes	Guidance
19(b)(ii)	Any two from: steeper curve because of a faster rate faster rate because of increased surface area same amount / volume / mass / no of mol of hydrogen peroxide ecf for M1 for a shallower curve because of slower rate.	2			
19(c)	filter (and rinse / wash)	1			
	dry manganese(IV) oxide	1			
	weigh / measure mass manganese(IV) oxide after reaction	1			
	the mass should be 0.1 g or unchanged.	1			
19(d)(i)	number of moles of O_2 formed = 0.096 / 24 = 0.004	1			
19(d)(ii)	number of moles of H_2O_2 in 40 cm ³ of solution = 0.004 × 2 = 0.008	1			
19(d)(iii)	concentration of the hydrogen peroxide in mol / dm ³ = 0.008 / 0.04 = 0.2	1			

Question	Answer	Marks	AO Element	Notes	Guidance
					[Total: 73]