		Download (Coop a 12 Nooda coo nom www.ngoodniet
1	A re	eversible reaction is shown.
		$2NO_2(g) \Rightarrow N_2O_4(g)$ $\Delta H = -58 \text{ kJ/mol}$
	Wh	ich statement about an equilibrium mixture of NO ₂ and N ₂ O ₄ is correct?
	A	If the pressure is decreased the amount of N ₂ O ₄ increases.
	В	If the temperature is increased the amount of N ₂ O ₄ increases.
	С	The rates of formation and decomposition of N_2O_4 are not the same.
	D	The decomposition of N_2O_4 is an endothermic reaction.
		[1]
		[Total: 1]
2	The	e Contact process changes sulfur dioxide into sulfur trioxide.
	28	$SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$
	the	e forward reaction is exothermic
	ter	mperature 400 to 450 °C
	lov	v pressure 1 to 10 atmospheres
	ca	talyst vanadium(V) oxide
	(a)	What is the formula of $vanadium(V)$ oxide?
		[1]
	(b)	Vanadium(V) oxide is an efficient catalyst at any temperature in the range 400 to 450 °C. Scientists are looking for an alternative catalyst which is efficient at 300 °C. What would be the advantage of using a lower temperature?

.....[2]

Download IGCSE & IB Resources from www.igcse.net

(c) The process does not use a high pressure because of the extra expense. Suggest two advantages of using a high pressure? Explain your suggestions.	
	[4]
	[Total: 7]
Sulfuric acid is an important acid, both in the laboratory and in industry. Sulfuric acid is manufactured in the Contact Process. Originally, it was made by h sulfates and by burning a mixture of sulfur and potassium nitrate. A group of naturally occurring minerals have the formula of the type FeSO ₄ .xH ₂ O 5, 6 or 7. The most common of these minerals is iron(II) sulfate-7-water.	-
(a) When this mineral is heated gently it dehydrates.	
$FeSO_4.7H_2O \Rightarrow FeSO_4 + 7H_2O$	
green pale yellow	
Describe how you could show that this reaction is reversible.	
	[2]
(b) When the $iron(II)$ sulfate is heated strongly, further decomposition occurs.	
$2\text{FeSO}_4(s) \rightarrow \text{Fe}_2\text{O}_3(s) + \text{SO}_2(g) + \text{SO}_3(g)$	
The gases formed in this reaction react with water and oxygen to form sulfur Explain how the sulfuric acid is formed.	ic acid.
	[2]

3

(c) A mineral of the type FeSO₄.xH₂O contains 37.2% of water. Complete the calculation to determine x.

mass of one mole of $H_2O = 18$ g mass of water in 100 g of $FeSO_4.xH_2O = 37.2$ g number of moles of H_2O in 100 g of $FeSO_4.xH_2O =$ g mass of $FeSO_4$ in 100 g of $FeSO_4.xH_2O =$ g number of moles of $FeSO_4 = 152$ g number of moles of $FeSO_4$ in 100 g of $FeSO_4.xH_2O =$ [4]

[Total: 8]