
1 The electronic structures of five atoms, **A**, **B**, **C**, **D** and **E**, are shown.

Answer the following questions about these atoms. Each atom may be used once, more than once or not at all.

Which atom, A, B, C, D or E:

(c) has 13 protons

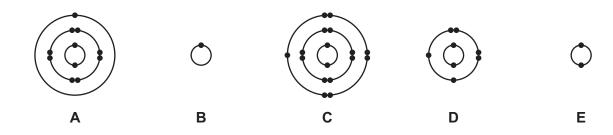
	F41
	11
•••••	F.1

(d) is a noble gas

 [1]
[1]

(e) forms a stable ion with a single negative charge?

[Total: 5]


2 Complete the table to show the number of electrons, neutrons and protons in the sulfur atom and oxide ion shown.

	number of electrons	number of neutrons	number of protons
³⁴ S	16		
¹⁸ O ²⁻		10	

[3]

[Total: 3]

3 The electronic structures of five atoms, A, B, C, D and E, are shown.

Answer the following questions about these atoms. Each atom may be used once, more than once or not at all.

Which atom, **A**, **B**, **C**, **D** or **E**:

(a)	is in Group VIII of the Periodic Table,	
		[1]
(b)	is a chlorine atom,	
		[1]
(c)	has 17 protons in its nucleus,	
		[1]
(d)	is an atom of an element in the same period as carbon,	
		[1]
(e)	is an atom of a metal?	
		[1]
		[Total: 5]

4 The table shows the ions present in a 1000 cm³ sample of mineral water.

ion present	formula of ion	mass present in mg/1000 cm ³
calcium	Ca ²⁺	52
chloride	C1-	10
hydrogencarbonate	HCO ₃ -	50
magnesium	Mg ²⁺	
sodium	Na⁺	12
sulfate	SO ₄ 2-	10
	NO ₃ -	8
	total	150

Answer these questions using the information from the table.

(a)	Calculate the mass	of magnesium	ions in the	1000 cm ³	sample of m	nineral water.

	mass of magnesium ions = mg	[1]
(b)	Which negative ion is present in the highest concentration?	
		[1]
(c)	State the name of the ion NO ₃ ⁻ .	
		[1]
(d)	Calculate the mass of hydrogencarbonate ions present in 250 cm ³ of this sample.	

mass of hydrogencarbonate ions = mg [1]

[Total: 4]

5 Complete the table to show the number of electrons, neutrons and protons in the magnesium atom and calcium ion shown.

	,		
	number of electrons	number of neutrons	number of protons
²⁶ ₁₂ Mg	12		
⁴⁴ Ca ²⁺		24	

[3]

[Total: 3]

6	Wh	hich statements about isotopes of the same element are correct?							
	1.	They are atoms which have the same chemical properties because they have the same number of electrons in their outer shell.							
	2.	They are atoms white different numbers of			nber of e	electrons and	I neutrons	but	
	3.	They are atoms whinumbers of neutron		ave the same nun	nber of e	electrons and	l protons b	ut different	
	Α	1 and 2	В	1 and 3	С	2 only	D	3 only	
									[1]
									[Total: 1]
7	Elei	ment Q has 4 electro	ns in	its outer shell an	d has 69	neutrons. C	conducts	electricity.	
	Wh	at is Q?							
	A	carbon (C)							
	В	lead (Pb)							
	С	thulium (Tm)							
	D	tin (Sn)							
									[1]
									[Total: 1]
8	Wh	ich statement descril	bes p	ositive ions?					
	A	Positive ions have r	nore	electrons than ne	utrons.				
	В	Positive ions have r	nore	protons than neu	trons.				
	С	Positive ions have r	nore	electrons than pro	otons.				
	D	Positive ions have r	more	protons than elec	trons.				
									[1]
									[Total: 1]

9 Two atoms, X and Y, can be represented as shown.

$$^{41}_{20}X$$
 $^{45}_{20}Y$

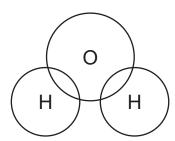
Which statement is **not** correct?

- **A** X and Y are atoms of different elements.
- **B** X and Y are isotopes.
- **C** X and Y have different mass numbers.
- **D** X and Y have the same number of electrons.

[1]

[Total: 1]

10 Two atoms have the same relative atomic mass but different chemical properties.


Which row about the proton and neutron numbers of these atoms is correct?

	proton numbers	neutron numbers
Α	different	different
В	different	same
С	same	different
D	same	same

[1]

[Total: 1]

- 11 Hydrogen chloride dissolves in water to form hydrochloric acid.
 - (a) Complete the dot-and-cross diagram to show the arrangement of the outer shell electrons in water.

Г٦	Γο	ta	ŀ	2
	v	ια	١.	_

12	Complete th	ne following s	entence about	isotopes using	y words from th	ne list below.

	atoms	ions	molecules	neutrons	nuclei	protons	
Isotopes ar	e		of the same ele	ement with the	same nun	nber of	
	but	different r	numbers of		•		
							[3]
							[Total: 3]
Hydrochlor	ic acid is fo	rmed whe	en hydrogen ch	loride ass is d	licealyed in	water	

13 Hydrochloric acid is formed when hydrogen chloride gas is dissolved in water.

Draw a dot-and-cross diagram to show the electron arrangement in a molecule of hydrogen chloride.

Show only the outer electron shells.

Show hydrogen electrons as x.

Show chlorine electrons as ●.

[2]

[Total: 2]

14 Draw the electronic structure of a fluorine atom.

[2]

[Total: 2]

15	A metal can is made of mild steel coated with tin

(a) Steel is an alloy.

(b)

What is meant by the term alloy?	
	[1]
Why does the tin prevent the steel can from rusting?	
	[2]

[Total: 3]

16 Hydrochloric acid is made by dissolving hydrogen chloride gas, HCl, in water.

Draw a dot-and-cross diagram to show a molecule of hydrogen chloride.

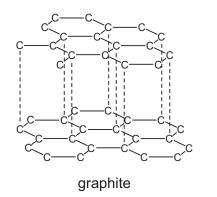
Show hydrogen electrons as x.

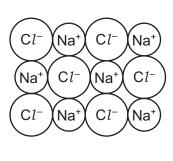
Show chlorine electrons as

.

[2]

[Total: 2]


17 Complete the table below to show the number of protons, neutrons and electrons in two isotopes of uranium.

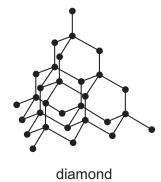

isotope	²³⁵ U	²³⁸ U
protons		
neutrons		
electrons		

[3]

[Total: 3]

18 The structures of graphite and sodium chloride are shown below.


sodium chloride


(a)	Describe the similarity and differences in these structures.					

[Total: 4]

[4]

19 Two macromolecular forms of carbon are graphite and diamond. The structures of graphite and diamond are given below.

Silicon(IV) oxide also has a macromolecular structure.

(a) Describe the macromolecular structure of silicon(IV) oxide.

[1]

	(b)	Predict two	o physica	l propert	ies which	n diamon	d and sili	con(IV) (oxide hav	e in commo	n.
											[2]
											[Total: 3]
20	Lithi	ium has two	naturally	/-occurrii	ng isotop	es. Thes	e can be	written a	s:		
					⁶ ₃ L	_i and	d ⁷ Li				
	Des	cribe the di	fference b	oetween	these isc	otopes.					
											[1]
											[Total: 1]
21	Con	nplete the fo	ollowing s	entence	s about c	compound	ds using	words fro	om the lis	t below.	
			che	mically		different	:	fixe	d		
			m	ixed	ŗ	hysicall	у	simil	ar		
	A cc	ompound is	a substan	ce which	consists	of two or	more dif	ferent ele	ments		
	com	nbined toget	her.								
	The	properties	of a com	oound ar	e	fro	m those	of the ele	ements fr	om which	
	it is	formed.									
	In a	compound,	the elem	nents are	combine	ed in		proportio	ons.		[3]
											[Total: 3]
22		ne 1860s, Jo e is shown.	ohn Newl	ands listo	ed the ele	ements ir	order of	f increasi	ng atomi	c mass. Par	t of his
			Н	Li	Ве	В	С	N	0		
			1	2	3	4	5	6	7		

Н	Li	Ве	В	С	N	0
1	2	3	4	5	6	7
F	Na	Mg	Αl	Si	Р	S
8	9	10	11	12	13	14
Cl	K	Ca	Cr	Ti	Mn	Fe
15	16	17	18	19	20	21

(i)	Describe the o	lifferences between N	Newlands' table and t	ne Periodic Table we	e use today.
					[3]
(ii)	What evidence are grouped to		nds' table, that some	elements with simila	r properties
					[1]
					[Total: 4]
		ed his first Periodic 1	able in 1869.		
or this	s table is shown	below.			
				Ti = 50	
				V = 51	
				Cr = 52	
				Mn = 55	
				Fe = 56	
				Co = 59	
	H = 1			Cu = 63.4	
		Be = 9.4	Mg = 24	Zn = 65.2	
		B = 11	Al = 27.4	?	
		C = 12	Si = 28	?	
		N = 14	P = 31	As = 75	
		O = 16	S = 32	Se = 79.4	
		F = 19	C1 = 35.5	Br = 80	
	Li = 7	Na = 23	K = 39	Rb = 85.4	

(a)	What differences are there between Mendeleev's table and the Periodic Table we use tod	ay?
		[4]
(b)	State the names of any two elements in the table above which exist as diatomic molecule	[4]
(2)	and	
	[Tota	
The	e diagram shows the ball-point pen used in an experiment.	-
	poly(ethene) cap	
	alloy tip	
	ink	
(a)	The cap of the pen is made from poly(ethene).	
	Describe the formation of poly(ethene) from ethene. In your answer, include the words:	
	monomer,polymer.	
		[2]
(b)	The tip of the pen is made from an alloy.	
	what is meant by the term alloy?	
		F.4.7
	[Total	[1] I: 31
	[Tota	ı. J

24

25 The table gives information about atoms and ions **A**, **B** and **C**.

Complete the table.

•							
	number of electrons	number of neutrons	number of protons	symbol			
A		14	13	²⁷ A <i>l</i>			
В			12	²⁵ ₁₂ Mg ²⁺			
С	10	10	9				

[6	

[Total: 6]

[Total: 6]

			_
26	Ма	gnesium exists as three isotopes, $^{24}_{12}\mathrm{Mg}$, $^{25}_{12}\mathrm{Mg}$ and $^{26}_{12}\mathrm{Mg}$.	
	All i	sotopes of magnesium react with dilute hydrochloric acid to make hydrogen and a salt.	
	(a)	Why do all isotopes of magnesium react in the same way?	
			[2]
	(b)	Write a chemical equation for the reaction between magnesium and dilute hydrochloric ac	id.
			[2]
	(c)	Describe a test for hydrogen.	
		test	
		result	[2]

27 Complete the table to identify the atoms and ions which have the following numbers of protons, neutrons and electrons.

	number of protons	number of neutrons	number of electrons
²³ Na ⁺	11	12	10
	4	5	4
	17	20	18

[4]

[Total: 4]

 $\textbf{28} \quad \text{Aqueous potassium iodide reacts with aqueous copper} (II) \ \text{sulfate to produce iodine}.$

(a) Balance the chemical equation for this reaction.

$$KI + CuSO_4 \rightarrow CuI + I_2 + K_2SO_4$$
 [2]

(b) Deduce the charge on the copper ion in CuI.

[´	[1]
----	-----

(c) In terms of electron transfer, explain why copper is reduced in this reaction.

(d) Identify the reducing agent.

[1]
נין

[Total: 5]

Complete the table to show the number of nucleons, neutrons and electrons in an $^{27}_{13}{\rm A}l^{3+}$ ion.

	number in $^{27}_{13}Al^{3+}$
nucleons	
neutrons	
electrons	

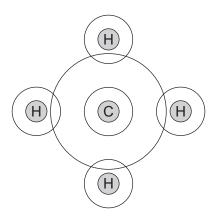
[3]

[Total: 3]

30 Lithium nitride is an ionic compound. Nitrogen trifluoride is a covalent compound.

Lithium nitride has a high melting point, 813 °C. Nitrogen trifluoride has a low melting point, -207 °C. Explain why the melting points are different. [2] [Total: 2] Two macromolecular forms of carbon are graphite and diamond. The structures of graphite and diamond are given below. graphite diamond (a) Explain in terms of its structure why graphite is soft and is a good conductor of electricity.[3] **(b)** State **two** uses of graphite which depend on the above properties. It is soft It is a good conductor of electricity [2]

[Total: 5]


32	Nitrogen can form ionic compounds with reactive metals and covalent compounds with non-metals.					
	Nitr	ogen reacts with lithium to form the ionic compound lithium nitride, Li ₃ N.				
	(a)	Write the equation for the reaction between lithium and nitrogen.				
		[2]				
	(b)	Lithium nitride is an ionic compound. Draw a diagram which shows its formula, the charges on the ions and the arrangement of the valency electrons around the negative ion.				
		Use x for an electron from a lithium atom. Use o for an electron from a nitrogen atom.				
		[2]				
		[Total: 4]				
33	Nitr	ogen fluoride is a covalent compound.				
		w a diagram showing the arrangement of the valency electrons in one molecule of the covalent apound nitrogen trifluoride, ${\rm NF_3}$.				
		e x for an electron from a nitrogen atom. e o for an electron from a fluorine atom.				
		[2]				
		[Total: 2]				
		•				

34 Draw the electronic structure of a potassium atom.

[2]

[Total: 2]

35 Complete the dot and cross diagram of methane to show all the electrons.

[2]

[Total: 2]

- **36** In the Periodic Table, the elements are arranged in columns called Groups and in rows called Periods.
 - (a) Complete the table for some of the elements in Period 3.

group number	I	II	III	IV	V	VI	VII
symbol	Na	Mg	Al	Si	Р	S	Cl
number of valency electrons							
valency							

[2]

[Total: 7]

(b)	What is the relationship between the group number and the number of valency electrons?			
		[1]		
(c)	Explain the relationship between the number of valency electrons and the valency			
	for the elements Na to Al,			
	for the elements P to C <i>l.</i>			
	Totale clements i to ou			
		[4]		