

SOLUTION TO 5070/41/0/N/19

QUICK ACCESS GRID

The solution to a particular question can be accessed instantly by clicking on the desired question number in the QUICK ACCESS GRID.

1 2	3	4	5	6
------------	---	---	---	---

©EDUCATALYST

	Q1				
	ANSWER	NOTES			
a		In the electrolysis of aqueous Copper(II) sulfate, hydroxide ions get oxidised at the anode forming Oxygen gas. Copper ions get reduced at the cathode in preference to hydrogen ions as Copper is below Hydrogen on the reactivity series.			
		In the electrolysis of aqueous potassium iodide, Hydrogen ions get discharged at the cathode in preference to Potassium ions as Potassium is above Hydrogen on the reactivity series. Iodide ions get oxidised at the anode forming Iodine (brown liquid).			
		In the electrolysis of dilute Sulfuric acid, hydrogen ions get reduced at the cathode forming Hydrogen gas while hydroxide ions get oxidised at the anode forming Oxygen gas.			

name of product at the anode(+)	observation at the anode(+)	name of product at the cathode(–)	observation at the cathode(–)
oxygen	bubbles of colourless gas	copper	pink/brown solid(1)
iodine(1)	brown liquid	hydrogen (1)	bubbles of colourless gas(1)
oxygen(1)	bubbles of colourless gas	hydrogen (1)	bubbles of colourless gas

Q1					
ANSWER	NOTES				
b Test: bring a glowing splint close to the gas	Oxygen supports combustion. The glowing splint therefore relights in Oxygen.				
Result: the splint relights					
BACK TO QUICK ACC	CESS GRID				

www.igcsechemistryanswers.com

	Q2	
	ANSWER	NOTES
а	Excess means more than enough needed for reaction	The excess remains unreacted.
b	A conical flask	
	B gas syringe	
С	Water bath	
d	particle size / surface area of calcium carbonate concentration of dilute Hydrochloric acid	
e		experiment 3 experiment 2 experiment 1
(i)	The gradient of the graph indicates the reaction rate. The steepest gradient indicates the fastest reaction. Alternatively, the graph which levels off first indicates the fastest reaction.	

ANSWERNOTESe (ii)shown on graph(iii)The graphs level off (no change in volume of carbon dioxide).(iii)The reaction stops when all of the dilute HCl has reacted.(iv)The reaction.		Q2 continued from previous page						
 (ii) shown on graph (iii) The graphs level off (no change in volume of carbon dioxide). (iv) The reaction stops when all of the dilute Calcium carbonate is in excess, hence 		ANSWER NOTES						
 volume of carbon dioxide). (iv) The reaction stops when all of the dilute Calcium carbonate is in excess, hence 	-	shown on graph						
	(iii)							
	(iv)							
BACK TO QUICK ACCESS GRID www.igcsechemistryanswers.com								

Q3							
ANSWER	NOTES						
Add the mixture to warm dilute Sulfuric	$CuO(s) + H_2SO_4(aq)$						
acid taken in a beaker. Stir well with a glass rod. \rightarrow CuSO ₄ (aq) + H ₂ O (I)							
The Copper(II) oxide dissolves in the acid							
forming a blue solution while Carbon							
does not.							
Filter the mixture. The residue is Carbon. The blue filtrate contains Copper(II) sulfate.							
Wash the residue with distilled water to remove traces of acid.							
Dry it by pressing between filter papers.							
BACK TO QUICK ACCESS GRID							
www.igcsechemistryanswers.com							

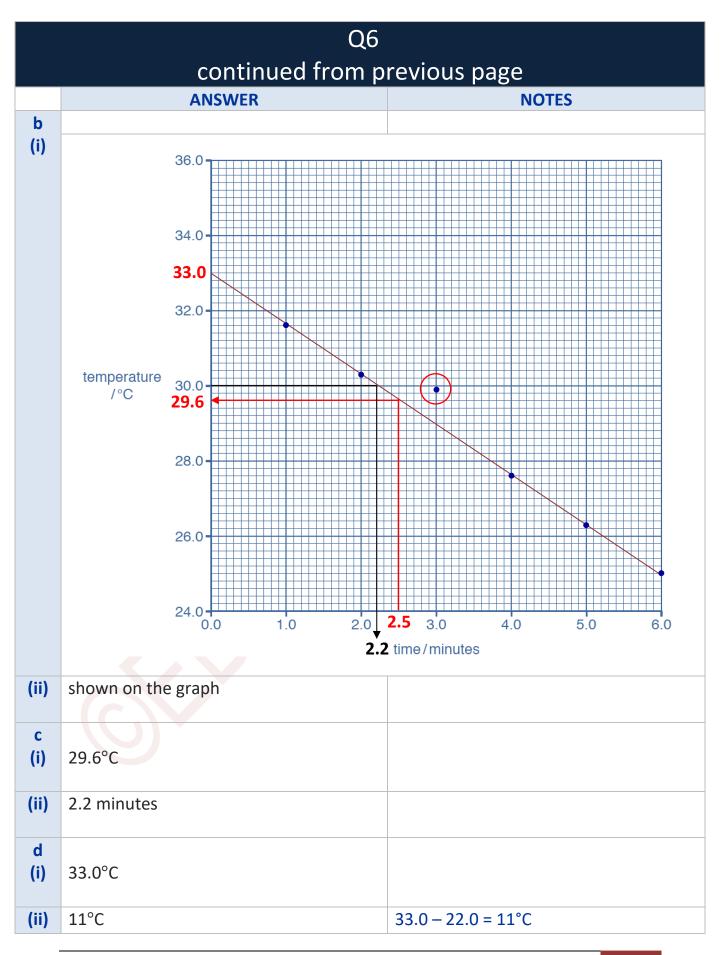
Q4				
Α	NSWER		NOTE	S
	sodium hydroxide	excess sodiur hydroxide	m barium nitrate and nitric acid	aluminium and sodium hydroxide + heat
aqueous zinc sulfate	white ppt (1)	Soluble (1)	white ppt	no reaction
aqueous copper(II) sulfate	blue ppt (1)	insoluble	white ppt (1)	no reaction (1)
aqueous calcium nitrate	white ppt (1)	Insoluble (1)	no reaction(1)	Ammonia (1) litmus blue (1)

	reagents						
solutions	Test for r	Test for metal ions		test for Nitrate ions			
	aqueous sodium hydroxide	aqueous sodium hydroxide in excess	aqueous barium nitrate and dilute nitric acid	Aluminium and aqueous sodium hydroxide + heat			
aqueous zinc sulfate	V	~	~	X			
aqueous copper(II) sulfate		~	✓	×			
aqueous calcium nitrate	~	✓	×	positive result: (Ammonia) gas produced upon warming, turns damp red litmus blue			

www.igcsechemistryanswers.com

	ANSWER				NO	TES
а	A pipette is more accurate than a measuring cylinder.					
b	burette					
С	Traces of water left in the burette post washing will dilute solution L.				oncentration o ting in errors in	
d		/				
		1	2		3	
		23.4	49	.2	33.6	
		0.0	24	.8	10.0	
		23.4	24	.4	23.6	
		\checkmark			\checkmark	
						_
	Average volume of L = (23.4 + 23.6) ÷ 2 = 2	23.5 cm ³		that a	are very close to	sults are the ones o each other, n range of ± 0.2 cm ³ .
е	Average volume of L			n = C	×V	
	$= 23.5 \text{ cm}^3 = 0.0235 \text{ cm}^3$					
	n (Na ₂ S ₂ O ₃)					
	$= 0.0500 \times 0.0235$					
	= 0.001175					
f	mole ratio					
	2 Na ₂ S ₂ O ₃ : 1 I ₂					
	n (I ₂) = 0.001175 ÷ 2	= 0.0005875				

	Q5						
	continued from previous page						
	ANSWER	NOTES					
g	mole ratio 1 NaClO : 1 I ₂ 0.0005875 NaClO : 0.0005875 I ₂						
	n (NaClO) = 0.0005875						
h	M _r of NaClO = 23 + 35.5 + 16 = 74.5						
i	Mass of NaClO = 74.5 × 0.0005875 = 0.04376875 g						
j (i)	Concentration in g/dm ³ = $\frac{0.04376875}{25} \times 1000$ = 1.75075						
(ii)	Concentration in mol/dm ³ = $\frac{0.0005875}{25} \times 1000$ = 0.0235						
	BACK TO QUICK A						
	www.igcsechemistryanswers.com						



	Q6					
		ANSWER	NOTES			
	a (i)	The reaction is exothermic.	Exothermic → heat energy is given out			
((ii)	Once the reaction is over, the temperature starts decreasing as the reaction mixture starts cooling due to loss of heat to the surroundings.				
(iii)	22.0°C	The lowest temperature reached would be the initial temperature of the solution before addition of Zinc.			

©EDUCATALYST

5070/41/0/N/19 11

Q6		
continued from previous page		
	ANSWER	NOTES
e (i)	Volume of Iron(II) sulfate = 25.0 cm ³ = 0.025 dm ³	
	n (Iron(II) sulfate) = 2.0 × 0.025 = 0.05	
(ii)	Maximum temperature rise = 11°C	
	Moles of Iron(II) sulfate = 0.05	
	Heat produced	
	$25 \times 4.2 \times 11$	
	= 1000 × 0.05	
	= 23.1 kJ / mol	
BACK TO QUICK ACCESS GRID		

www.igcsechemistryanswers.com

END OF DOCUMENT