

SOLUTION TO 5070/21/0/N/19

QUICK ACCESS GRID

The solution to a particular question can be accessed instantly by clicking on the desired question number in the QUICK ACCESS GRID.

	SECTION A					
1 2 3 4				5		
SECTION B						
6	7	8	9	10		

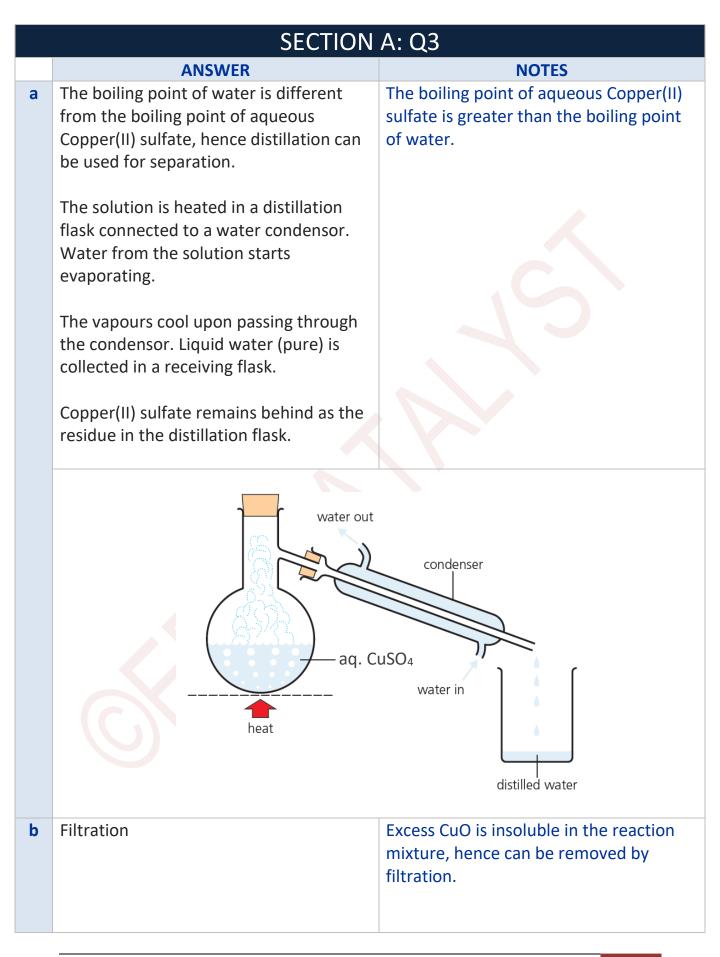
©EDUCATALYST

©EDUCATALYST

	SECTION A: Q1			
	ANSWER	NOTES		
а	Ρ	P is present in group V of the periodic table and has 5 outer shell electrons. It forms a stable ion by gaining 3 electrons and completing an octet in its outer shell. $P + 3e^- \rightarrow P^{3-}$		
b	Fe	Haematite – Fe_2O_3 – is an Iron ore.		
С	Fe	Fe forms Fe ³⁺ ion which gives a red- brown ppt. of Fe(OH) ₃ with aqueous Ammonia (as well as with aqueous NaOH).		
d	Mg	Mg is in the same group as Ca (group II), hence has similar chemical properties.		
е	C	C in the form of Graphite can have lubricating properties.		
	BACK TO QUICK ACCESS GRID www.igcsechemistryanswers.com			

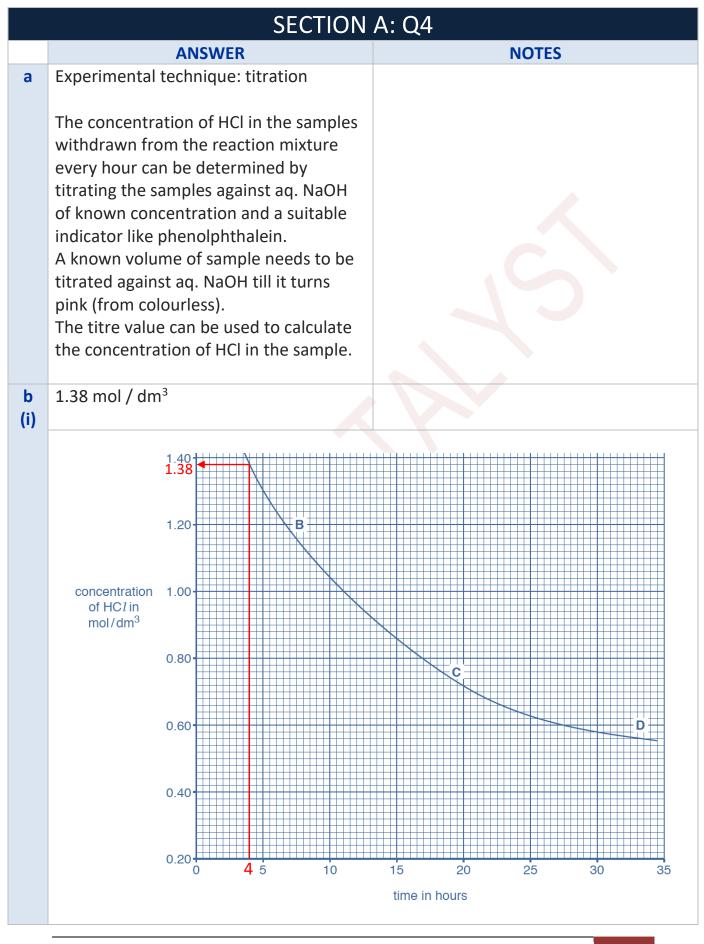
	SECTION A: Q2					
	ANSWER	NOTES				
а	 low melting point / low boiling point low density soft 	Group I metals are soft metals with low densities and low melting and boiling points. They are soft enough to be cut easily with a knife.				
b	Na Na					
C	V (H ₂) = 300 cm ³ = 0.300 dm ³ n (H ₂) = $\frac{0.300}{24}$ = 0.0125 mole ratio 2 mol of Na : 1 mol of H ₂ n (Na) = 0.0125 × 2 = 0.0250 mass of Na = 0.0250 × 23 = 0.575 g	Volume occupied by 1 mole of gas at room temperature and pressure = 24 dm ³ $n = \frac{V}{24}$ mass = n × Molar mass				

	ANSWER	NOTES
d	Sodium atom loses an electron to form Sodium ion, Na ⁺ .	
	Oxygen atom gains two electrons from two Sodium atoms to form Oxide ion, O ^{2–} .	
	Sodium ions and Oxide ions come close due to electrostatic attraction forming ionic bonds.	
	One formula unit of Sodium oxide consists of 2 Sodium ions and 1 oxide ion.	
	Na to the second	$\bullet \begin{bmatrix} \begin{bmatrix} \\ Na \end{bmatrix}^{+} \\ \begin{bmatrix} \\ Na \end{bmatrix}^{+} \begin{bmatrix} \\ \bullet \end{bmatrix}^{2-} \\ \bullet \end{bmatrix}^{2-}$
e (i)	high melting point / high boiling point / does not conduct electricity when solid / does conduct electricity when molten / does conduct electricity when in aqueous solution	Sodium chloride is an ionic compound lonic compounds generally have hig melting and boiling points. They do not conduct electricity in th solid state as the ions are not free t move. They can conduct electricity in molte state / aqueous solution as ions are free to move.



	SECTION A: Q2				
	(continued from previous page)				
	ANSWER	NOTES			
е					
(ii)	product at anode: Chlorine (gas)	Sodium is above Hydrogen on the reactivity series of metals.			
	product at cathode: Hydrogen (gas)	H ⁺ ions are therefore discharged at the cathode in preference to Na ⁺ ions. Since concentrated aqueous Sodium chloride is being used, chloride ions are discharged at the anode in preference to hydroxide ions.			
(iii)	Test: add nitric acid followed by aqueous silver nitrate Result: white precipitate formed	Chloride ions react with Silver ions to form a white precipitate of Silver chloride.			
	indicating presence of Chloride ions				
	BACK TO QUICK A				
	www.igcsechemistr	yanswers.com			

©EDUCATALYST



				ed from p	revious page)
		ANSW	EK		NOTES
С		Cu	Cs	Cl	
	mass/100 g	21.09	43.82	35.09	
	Ar	64	133	35.5	
	n	21.09	43.82	35.09	
		64 = 0.33	133 = 0.33	35.5 = 0.99	
	Mole ratio	0.33	0.33	0.99	
		0.33	0.33	0.33	
		= 1	= 1	= 3	
	Empirical formula		CuCsCl₃		

©EDUCATALYST

	SECTION A: Q4 (continued from previous page)
	ANSWER NOTES
b (ii)	The rate of reaction is fastest at point A on the graph. Gradient of graph at a given point = rate of reaction at that point
	The gradient of the curve is greatest at A indicating fastest reaction.
C	The rate of a reaction decreases when the temperature is decreased. At a lower temperature, the reacting particles lose energy, start moving slower and collide less often. The collision rate decreases. The proportion of reacting particles that collide with an energy ≤ activation energy also decreases.
d	Universal indicator paper turns red. Hydrochloric acid is a strong acid (low pH), hence turns Universal indicator red.
	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 acidic neutral alkaline
е	lead chloride / silver chloride

	SECTION A: Q4 (continued from previous page)				
	ANSWER	NOTES			
f	Effect: CFCs destroy ozone / deplete ozone layer Explanation: More (harmful) UV radiation will get to the Earth's surface. Incidences of skin cancer / eye cataracts increase.				
	BACK TO QUICK A	CCESS GRID			
	www.igcsechemistryanswers.com				

	SECTION A: Q5			
	ANSWER	NOTES		
a (i)	boiling point of bromine: 59°C density of liquid chlorine: 2 g / cm ³	Acceptable range of values: boiling point of bromine: values from –10 to 150°C density of liquid chlorine: values from 1 to 3		
(ii)	black / grey-black / purple-grey / purple- black	The colour darkens down the table. Astatine is therefore most likely to be black (darker than lodine).		
b	Chlorine disinfects the water by killing the bacteria. It makes the water potable.			
с (i)	$Cl_2 + 2l^- \rightarrow 2Cl^- + l_2$	$Cl_{2} + 2KI \rightarrow 2KCI + l_{2}$ Ionic equation: $Cl_{2} + 2K^{+} + 2I^{-} \rightarrow 2K^{+} + 2CI^{-} + l_{2}$ Net ionic equation after eliminating the spectator ions (2K ⁺): $Cl_{2} + 2I^{-} \rightarrow 2CI^{-} + l_{2}$		
(ii)	Chlorine is more reactive than lodine, hence no reaction occurs.	A more reactive halogen can displace a less reactive halogen from its halide solution. lodine is less reactive than Chlorine, hence no displacement reaction occurs.		

	SECTION A: Q5 (continued from previous page)					
	ANSWER	NOTES				
d	Relative molecular mass of NiCl ₂ = 59 + 35.5 × 2 = 130	Molar mass of water = 18 g				
	Mass of water in 238 g of hydrated Nickel(II) chloride = 238 – 130 = 108 g					
	n (H ₂ O) = $\frac{108}{18}$ = 6					
	mole ratio					
	1 mol of $NiCl_2$: x mol of H_2O					
	x = 6					
	BACK TO QUICK A	CCESS GRID				
BACK TO QUICK ACCESS GRID						

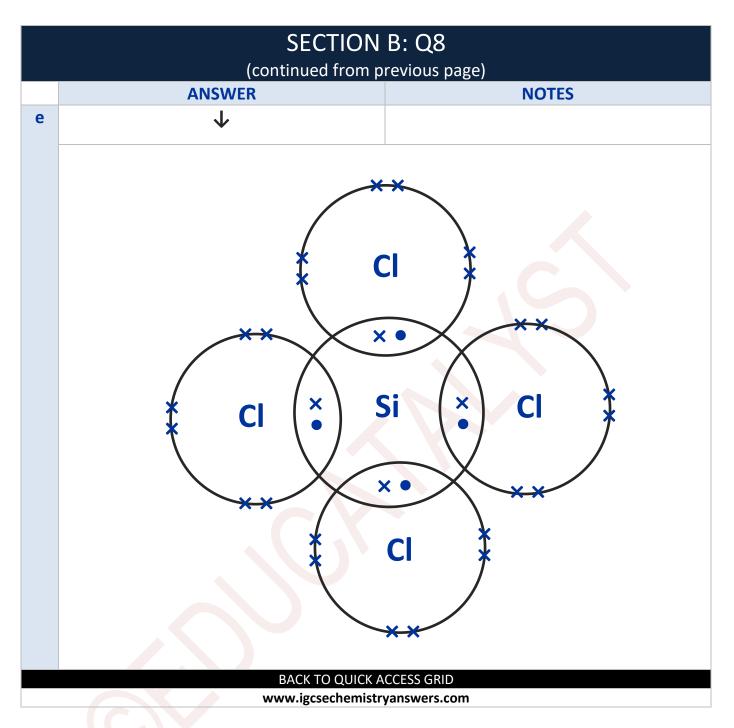
www.igcsechemistryanswers.com

	SECTION	B: Q6
	ANSWER	NOTES
а	Weak indicates an acid that does not dissociate completely / partial ionisation in water / little dissociation.	
b	 arrangement: In a solid, the particles are held together closely, often in the form of a lattice. movement: The particles can only vibrate about their fixed positions. 	Lattice = ordered / regular arrangement
C	gas	
	130°C > 118°C which is the boiling point of ethanol	
d	V (CH ₃ COOH) = 224 cm ³ = 0.224 dm ³	1 dm ³ = 1000 cm ³
	n (CH₃COOH)	Molar mass of Sodium carbonate
	= 0.224 × 0.250	= 23 × 2 + 12 + 3 × 16
	= 0.056	= 106 g
	Molar mass of Sodium carbonate = 106 g	
	n (Na ₂ CO ₃) = $\frac{3.18}{106}$ = 0.03	
	mole ratio	
	1 Na ₂ CO ₃ : 2 CH ₃ COOH	
	0.03 Na ₂ CO ₃ : 0.06 CH ₃ COOH	
	0.056 < 0.06	
	Na ₂ CO ₃ is therefore in excess.	

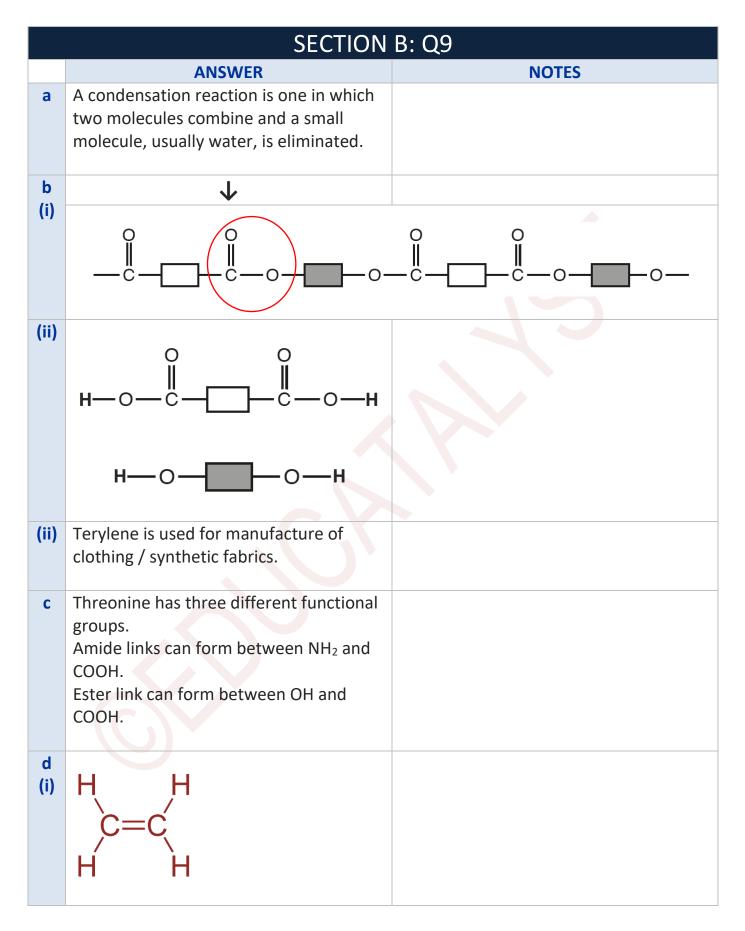
SECTION A: Q6 (continued from previous page)				
ANSWER	NOTES			
e Ca + 2CH ₃ COOH \rightarrow (CH ₃ COO) ₂ Ca + H ₂				
f (i) Butyl ethanoate	An ester has a two-part name. First part of the name is derived from the alcohol. Alcohol \rightarrow Alkyl Butanol \rightarrow Butyl Second part of the name is derived from the acid. carboxylic \rightarrow carboxylate Ethanoic \rightarrow ethanoate			
(ii) $CH_3COOC_4H_9$ H - C - C - C - C - C - C - H H - H - C - C - C - C - C - H H - H - H - H - H - H H - H - H - H - H - H - H H - H - H - H - H - H - H - H - H H - H - H - H - H - H - H - H - H - H -				

	SECTION B: Q7				
	ANSWER	NOTES			
a (i)	The equilibrium shifts to the right as the forward reaction is exothermic.	Decrease in temperature favours the exothermic reaction. Increase in temperature favours the endothermic reaction.			
(ii)	There are equal number of moles of gas on each side of equation.	Increase in pressure favours the side with fewer moles of gas while decrease in pressure favours the side with greater number of gas moles. If the number of gas moles on each side of the equation for the reaction are equal, change in pressure has no effect on the equilibrium position.			
b (i)	\checkmark	the enthalpy change for the reaction = $+\Delta H$ the activation energy of the reaction = E_a			
	energy $H_2O(g) + C(s)$ progr	E_{a} $+\Delta H$ ess of reaction			

SECTION B: Q7 (continued from previous page)					
	ANSWER	NOTES			
b (ii)	2 Fe(OH) ₃ + 3 H ₂ S → Fe ₂ S ₃ + 6 H ₂ O				
с (i)	Sulfur present in fossil fuels burns to form sulfur dioxide, an acidic gas. Sulfur dioxide reacts with rainwater / water in atmosphere to form sulphurous acid.				
(ii)	Acid rain corrodes buildings made of carbonate rocks like marble. Acid rain reacts with mortar and can damage metallic structures	Acids can react with carbonates to form the corresponding salts and water and carbon dioxide gas Acids react with metallic structures to form the corresponding salts and hydrogen gas.			



	SECTION B: Q8				
	ANSWER	NOTES			
а	number of electrons: 14	³⁰ ₁₄ Si			
	number of neutrons: 16	$30 \rightarrow$ Nucleon number			
	number of protons: 14	14 \rightarrow Proton number			
		In an atom, number of protons = number of electrons			
		Number of neutrons = nucleon number – proton number			
b	$3Si + 2N_2 \rightarrow Si_3N_4$				
с (i)	 Both have giant covalent lattice structures. Both structures are tetrahedral. 				
(ii)	The atoms in Silicon dioxide are held together by an extensive network of strong covalent bonds. A large amount of energy is required to break many of these bonds in order to melt the solid, hence high melting point.				
d	SiO ₂ C ₄ H ₁₂	Simply count the number of atoms of each type to deduce the molecular formula.			



	SECTION B: Q9 (continued from previous page)				
	ANSWER	NOTES			
d (ii)	Non-biodegradable cannot be broken down by organisms. OR It cannot be broken by down biological means. OR It cannot be decomposed by bacteria / cannot be decayed by fungi.				
(iii)	Non-biodegradable plastics get stuck in gullets of birds / get stuck in gills of fish / blocks drains / litter / burning causes toxic gases to be emitted / burning causes greenhouse gas emissions	Chemistry PROBLEMS WITH PLASTICS			
	BACK TO QUICK ACCESS GRID				
	www.igcsechemistryanswers.com				

END OF DOCUMENT

