

SOLUTION TO 5070/12/M/J/20

QUICK ACCESS GRID

The solution to a particular question can be accessed instantly by clicking on the desired question number in the QUICK ACCESS GRID.

1	2	3	4	5
6	7	8	9	10
11	12	13	14	15
16	17	18	19	20
21	22	23	24	25
26	27	28	29	30
31	32	33	34	35
36	37	38	39	40

©EDUCATALYST

CAMBRIDGE O LEVEL CHEMISTRY/5070/12/M/J/20

	S8	
	D	
lon	Electronic configuration	Number of shells that
		contain electrons
Al ³⁺	2.8	2
Be ²⁺	2	1
N ^{3–}	2.8	1
S ^{2–}	2.8.8	3

CAMBRIDGE O LEVEL CHEMISTRY/5070/12/M/J/20

BACK TO QUICK ACCESS GRID www.igcsechemistryanswers.com

S16 **Electroplating essentials:** Object to be plated: cathode Pure metal of which plating is to be done: anode Electrolyte: solution containing metal ions of metal of which plating is to be done To electroplate Copper onto a steel key: Object to be plated: steel key \rightarrow cathode Pure metal of which plating is to be done: piece of pure copper \rightarrow anode Electrolyte: solution containing Cu^{2+} ions \rightarrow aqueous copper(II) sulfate BACK TO QUICK ACCESS GRID www.igcsechemistryanswers.com

S24 The properties described in the question are typical of Alkali metals (Group I). Element X is **Potassium**. NOTE: Alkali metals are soft; they can be cut easily with a knife. They have low densities and react readily with water. The density of Li, Na, and K is lower than water. K therefore fizzes on the surface of water. BACK TO QUICK ACCESS GRID www.igcsechemistryanswers.com

S25									
A									
		KI(aq)	KBr(aq)						
	Α	✓ 0	√	key					
L	в	\checkmark	X	√ = yes					
	С	×	\checkmark	x = no					
	D	X	X						
A more reactive halogen can displace a less reactive halogen from its halide solution. The reactivity of group VII elements decreases down the group.									
Chlorine is more reactive than both, Bromine and Iodine. It can therefore displace Iodine from KI (aq) as well as Br_2 from KBr (aq).									

BACK TO QUICK ACCESS GRID

CAMBRIDGE O LEVEL CHEMISTRY/5070/12/M/J/20

END OF DOCUMENT