

SOLUTION TO 5070/42/M/J/19

QUICK ACCESS GRID

The solution to a particular question can be accessed instantly by clicking on the desired question number in the QUICK ACCESS GRID.

_				
1	2	2	E	6
–	_	3		U

©EDUCATALYST

©EDUCATALYST

	Q1							
	ANSWER			NOTES				
а	A = conical flask / Erlenmeyer flask							
	B = pipette							
	C = burette							
b (i)	↓							
		titration number	1	2		3	4	\mathbf{O}
		final burette reading / cm ³	24.1	47	7.5	23.6	24.4	
		initial burette reading / cm³	0.0	23	3.7	0.3	0.8	
		volume of 0.600 mol / dm ³ hydrochloric acid used / cm ³	24.1	23	3.8	23.3	23.6	
(ii)	Average volume	C						
	= (23.8 + 23.6) ÷ 2 = 23.7 cm ³							
(iii)	Addition of distilled	water only cl	hanges					
	the concentration of	f the solution	n in A.	<i>c</i>				
	It does not affect the $Mg(OH)_2$	e amount or	moles	OŤ				
	Nig(On)2.							
C					2	2		
(i)	Average volume = $23.3 \text{ cm}^3 = 0.0233 \text{ dm}^3$			1 d	m [°] = 1(JUU cm ³		
	n (HCl) = 0.600 × 0.0233 = 0.01398			n =	C×V			

©EDUCATALYST

	Q1						
	ANSWER	NOTES					
с (ii)	mole ratio 1 Mg(OH) ₂ : 2 HCl						
	$\frac{1}{2}$ Mg(OH) ₂ : 1 HCl n Mg(OH) ₂ = $\frac{1}{2} \times 0.01398 = 0.00699$						
(iii)	Molar mass of Magnesium hydroxide, M = 24 + (16 + 1) × 2 = 58 g Mass of Magnesium hydroxide, m = 0.00699 × 58 = 0.405 g	m = n × M					
(iv)	mass of 5.0 cm ³ of the Milk of Magnesia = 2.34 × 5 = 11.7 g						
(v) percentage by mass of magnesium hydroxide in the Milk of Magnesia $= \frac{0.405}{11.7} \times 100$ $= 3.47\%$							
BACK TO QUICK ACCESS GRID							
	www.igcsechemistryanswers.com						

©EDUCATALYST

	Q3						
	ANSWER	NOTES					
a (i)	cathode: pink / brown solid deposits at the cathode anode: bubbles / fizzing / effervescence	Cu ²⁺ ions from the electrolytic solution get discharged by reduction at the cathode forming Cu metal which has a pink/brown appearance. Cu ²⁺ + 2e ⁻ \rightarrow Cu Hydroxide ions get oxidised at the anode forming Oxygen gas, hence bubbles are seen. 4OH ⁻ \rightarrow O ₂ + 2H ₂ O + 4e ⁻					
(11)	Test: glowing splint (into tube of gas)	Oxygen supports combustion. The glowing splint therefore relights in					

	Q3 (continued from provious page)						
	ANSWER NOTES						
a (iii)	Description: the colour fades away and becomes paler blue. The solution eventually goes colourless towards the end of the electrolysis. Explanation: as Cu ²⁺ / copper ions concentration falls	Cu ²⁺ ions are blue-coloured. As the concentration of Cu ²⁺ ions from the solution decreases by discharge at the cathode, the colour of the solution fades away.					
b (i)	The colour remains the same (does not fade away).	Cu atoms from the Cu anode get oxidised to Cu ²⁺ ions and enter the electrolytic solution to replace the Cu ²⁺ ion lost by way of discharge at the cathode. The colour therefore remains unchanged.					
(iii) (iii)	<pre>mass of cathode: increases mass of anode: decreases explanation: copper removed from anode by oxidation and copper forms on cathode by reduction Electrorefining of blister Copper</pre>	Mass of cathode increases due to deposition of Cu on the cathode formed by reduction of Cu^{2+} ions. $Cu^{2+} + 2e^- \rightarrow Cu$ Mass of anode decreases as Cu atoms from the anode get oxidised and enter the solution as Cu^{2+} ions.					
	Electroplating with Copper						
	BACK TO QUICK ACCESS GRID www.igcsechemistryanswers.com						

		Q4					
	ANSWER		NOTES				
а	The colour of the solution changes from		lodide ions are colourless.				
	colourless to brown.		Aqueo	us I ₂ is l	brown.		
h							
(i)	Calcium carbonate neutralises t	the acid.	Calcium carbonate is basic				
(-7			It can i	neutrali	se acids.		
(ii)	This increases the reaction rate	•	Powdered Calcium carbonate has a		as a		
			greate	r surfac	e area.		
			The co	ollision r	ate incre	ases resi	ulting in
			faster reaction.				
(iii)	The Calcium carbonate dissolve	s with	Calciur	m carbo	nate rea	cts with	the acid
(,	fizzing / effervescence.		to forr	n the co	orrespond	ding salt	in
			additic	on to wa	ater and o	carbon d	ioxide
			gas.				
			It therefore appears to dissolve in the				
			sample with fizzing.				
С	↓	•					
(i)							
	20						
	14						
	aqueous sodium 10	•) //					
	thiosulfate/cm ³						
	6 5						
	0		250	200	400	500	
	0 001	00 200 +ir			400	500	000
		ur	ne sam		eurs		
	©EDUCATALYST			507	0/42/M/	J/19 7	

	Q4				
	(continued from p	revious page)			
	ANSWER	NOTES			
c (ii)	shown on grid				
(iii)	shown on grid				
(iv)	14 cm ³				
(v)	80 s				
(vi)	Difference in slope: The slope of the curve at 50 seconds is much greater than that at 400 seconds. Explanation: The rate of the reaction is much greater at 50 s than at 400 s. The reaction is much faster at 50 seconds as the concentration of the reactants is higher resulting in greater collision rate. At 400 seconds, the reaction is nearing completion. The collision frequency decreases considerably, hence lower reaction rate.	Slope of the curve at a given point of time = reaction rate at that point The concentration of the reactants decreases with time resulting in a decrease in collision frequency and thereby in reaction rate.			

		Q5			
		ANSWER	NOTES		
	а	Add solid copper oxide (or copper carbonate or copper hydroxide) to warm dilute Sulfuric acid until some solid remains undissolved.	CuO (s) + H ₂ SO ₄ (aq) \rightarrow CuSO ₄ (aq) + H ₂ O (I)		
	Filter the solution to remove excess solid.				
	Collect the filtrate in an evaporating dish and heat till it becomes saturated (some solid appears).				
	Cool the solution for crystals to form.				
		Dry the crystals by pressing gently between dry filter papers or by placing in a warm oven.			
	b	Mix equal volumes of equimolar solutions of aqueous Silver nitrate solution and aqueous Sodium chloride in a beaker. Filter off the white precipitate of Silver chloride formed upon mixing. Wash the residue (ppt.) with distilled water and dry by pressing gently	Equimolar \rightarrow equal concentration in terms of mol/dm ³ AgNO ₃ (aq) + NaCl (aq) \rightarrow AgCl (s) + NaNO ₃ (aq)		
		between dry filter papers.			

	Q6				
ANSWER		NOTES			
а	The gas given off is carbon dioxide. The solution contains carbonate ions.	Carbonate ions react with dilute Hydrochloric acid to produce carbon dioxide gas, hence the fizz / effervescence. Carbon dioxide gas turns limewater			
b	white precipitate formed	MIRY. Ba ²⁺ ions react with sulfate ions from dilute Sulfuric acid to form a white precipitate of Barium sulfate.			
c	white precipitate formed	Ca^{2+} ions react with OH ⁻ ions to form a white ppt. of Ca(OH) ₂ which is insoluble in excess of aq. NaOH.			
d	slight white ppt., or no precipitate				
BACK TO QUICK ACCESS GRID					
www.igcsechemistryanswers.com					

END OF DOCUMENT