

SOLUTION TO 5070/41/M/J/19

QUICK ACCESS GRID

The solution to a particular question can be accessed instantly by clicking on the desired question number in the QUICK ACCESS GRID.

©EDUCATALYST

	Q1	
	ANSWER	NOTES
а	Letter: B Name: (Volumetric) Pipette	A pipette can measure the stated volume of solution most accurately.
b (i)	Burette	
(ii)	In aqueous Ammonia: Yellow /Orange In dilute Sulfuric acid: Red / Pink	Acid IIII Alkali
C	Add 50 cm ³ of 0.100 mol/dm ³ aqueous ammonia to a clean beaker using a burette / pipette. Add 25 cm ³ of 0.100 mol/dm ³ sulfuric acid to the same beaker from a burette. Stir well using a clean glass rod. Heat the beaker to evaporate the water from the solution till it becomes saturated (some solid appears on the inner sides of the beaker). Allow the beaker to cool for crystals to form. Dry crystals by pressing between (dry) filter papers.	Candidates can choose any other suitable volume of Ammonia. The volume of Sulfuric acid must always be half of that of Ammonia. H ₂ SO ₄ (aq) + 2NH ₃ (aq) → (NH ₄) ₂ SO ₄ (aq)

	Q1				
	ANSWER	NOTES			
d (i)	35 cm ³				
(ii)	 the damp blue litmus paper: no change in colour (stays blue) the damp red litmus paper: changes to blue 	Ammonia is a (weakly) basic gas. It therefore turns damp red litmus blue.			
	BACK TO QUICK ACCESS GRID				
	www.igcsechemistryanswers.com				

	Q2	
	ANSWER	NOTES
a (i)		
(ii)	450 s	
b (i)	Experiment 5 is repeated.	
(ii)	The point for 5 seems anomalous. It does not follow the general data trend. It is therefore repeated to increase the reliability of the data set.	
С	The more the mass of NaCl the faster the rate of rusting.	
d	Effect: The time for the blue colour to appear increases. Explanation: The paint excludes Oxygen / water. It acts as a barrier between the iron and Oxygen / Water.	
e (i)	Different students see the blue colour differently. As a result, they record different times. Different times could also result from use of stopwatch. Different students may use the stopwatch differently.	Perception of colour differs from one individual to another. Differences could also arise from the use of stopwatch. Some students are more accurate in timing the appearance of blue colour using the stopwatch than others. This gives rise to random errors.

	Q2				
	continued from previous page				
	ANSWER	NOTES			
e (ii)	The trend does not change as the same masses of NaCl are used by each student. The systematic errors that affect the masses remain the same.				
	BACK TO QUICK ACCESS GRID				
www.igcsechemistryanswers.com					

	Q3				
	ANSWER	NOTES			
а	A = ethanol	The mixture turns from orange to colourless with $B \rightarrow positive result$ for an			
	B = hexene	unsaturated hydrocarbon / alkene. B is hexene.			
	C = ethanoic acid				
		Solid Calcium carbonate can react with Ethanoic acid to form Calcium ethanoate and carbon dioxide gas. It does not react with Ethanol and hexene. Liquid C is therefore Ethanoic acid. Liquid A must be Ethanol.			
		Liquid A must be Ethanol.			
b	\checkmark				

	Reagent	Observations		
		A	В	С
		The mixture remains orange / stays the same / has no visible change	The mixture turns from orange to colourless	The mixture remains orange
	Add solid calcium carbonate	No visible change	No visible change	Effervescence / bubbles / fizzing / calcium carbonate dissolves / disappears
	Add dilute sulfuric acid and a few drops of potassium manganate (VII)	The mixture turns (from purple) to colourless / decolourises	The mixture turns from purple to colourless	The mixture remains purple
	U			
	The student mixes liqu	uids A and C.	Ethanol + Ethanoid	: acid
	(Ethanol and Ethanoic acid)		\rightarrow Ethyl ethanoate	e + Water

Ethyl ethanoate is an ester. Esters are sweet smelling liquids.

	Q3 (continued from previous page)				
	ANSWER	NOTES			
С					
(ii)	Precaution: The student should wear safety goggles, enclosed footwear, laboratory coat, and rubber gloves.	Alternative answer: The process required warming. Ethanol is a flammable liquid. The student should use a hotplate or			
	Reason: Concentrated Sulfuric acid is corrosive and can cause severe skin burns / potential eye damage.	water bath instead of warming directly using a Bunsen burner to prevent potential fire.			
	BACK TO QUICK ACCESS GRID				
	www.igcsechemistryanswers.com				

Q4	
ANSWER	NOTES
\checkmark	White ppt. = Aluminium hydroxide Al(OH) ₃ dissolves in excess of aq. NaOH but remains insoluble in excess of aq. NH ₃ .
	Chloride ions react with Silver ions to form a white ppt. of Silver chloride.
	The formation of a light blue ppt. which dissolves in excess of aq. NH ₃ is a positive result for Copper(II) ions.
	Sulfate ions react with Barium ions to form a white ppt. of Barium sulfate.

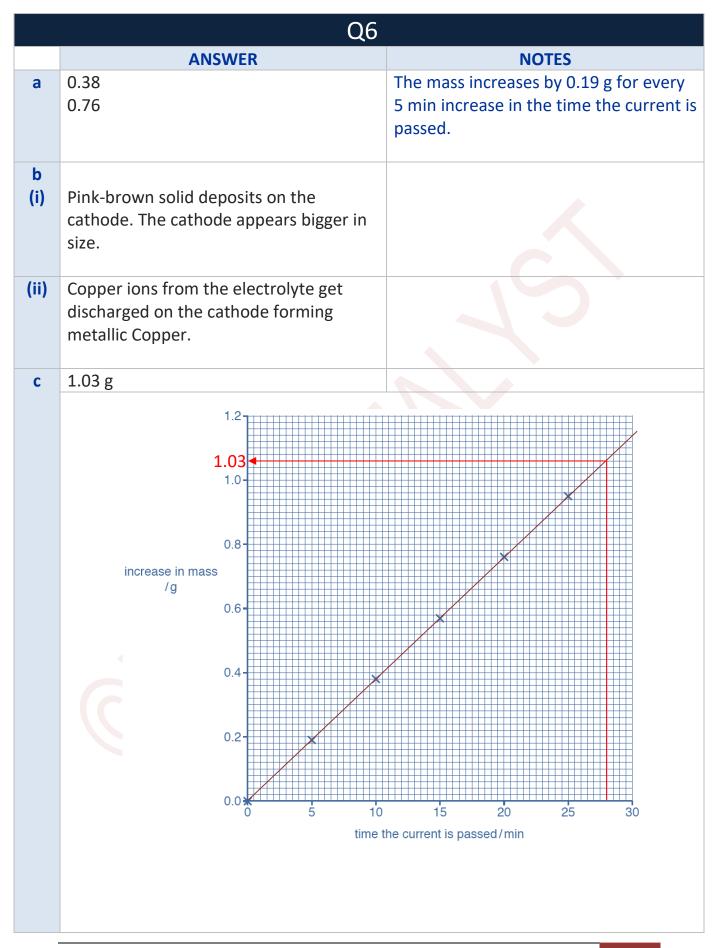
Test	Observation	Pollutant ions present in sample
M1 Add aqueous sodium hydroxide/NaOH(aq)/aqueous NaOH	white ppt., soluble in excess giving a colourless solution	Al ³⁺
Acidify with dilute nitric acid, then add aqueous silver nitrate	M2 white ppt	Cl-
Add aqueous ammonia	Light blue ppt., soluble in excess, giving a dark blue solution	M3 Cu ²⁺
M4 Aqueous barium chloride / aqueous BaCl ₂ / aqueous barium nitrate / aqueous Ba(NO ₃) ₂ (1) AND Acid / Dilute nitric acid / aqueous HNO ₃ or Dilute hydrochloric acid / aqueous HCl (1)	M5 white ppt	SO4 ²⁻

BACK TO QUICK ACCESS GRID

www.igcsechemistryanswers.com

		5				
	ANSWER				NOTES	
а	Test: The colourless liquid can be tested with anhydrous Copper(II) sulfate or with anhydrous Cobalt (II) chloride paper.					
	colour from wh Anhydrous Cob	per(II) sulfate changes ite to blue. alt(II) chloride paper from blue to pink.				
b	The ice cools th it (to water).	e vapour and condenses				
C	Carbon dioxide turns limewater milky.		Carbo It reac	vater is we n dioxide i ts with lim nate as a p	s an acidio newater to	c gas. 9 form Calcium
d		\checkmark				
(i)			, 			1
		titration number	1	2	3	_
		final reading	24.9	29.5	38.8	
		initial reading	0.0	5.2	14.3	
		volume of 1.00 mol / dm³ HC1/ cm³	24.9	24.3	24.5	
		best titration results (\checkmark)		\checkmark	\checkmark	
						-

	${ m Q5}$ (continued from previous page)				
	ANSWER	NOTES			
d (ii)	average volume				
	= (24.3 + 24.5) ÷ 2				
	= 24.4 cm ³				
(iii)	average volume = $24.4 \text{ cm}^3 = 0.0244 \text{ dm}^3$	Number of moles, n			
	n (HCl) = 1.00 × 0.0244 = 0.0244	= Volume × Concentration			
(iv)	0.0244 × 4 = 0.0976				
(v)	Volume of NaOH = $100 \text{ cm}^3 = 0.100 \text{ dm}^3$				
(•)					
	n (NaOH) = 0.100 × 2 = 0.200				
(vi)	0.200 – 0.0976 = 0.1024 moles				
(vii)	mole ratio				
	1 CO ₂ : 2 NaOH				
	1/2 CO2 : 1 NaOH				
	n (CO ₂) = 0.1024 ÷ 2 = 0.0512				
(viii)	n (hydrocarbon burnt)	n = mass ÷ molar mass (M _r)			
. ,	= 0.73 ÷ 86				
	= 0.00849 moles				



	Q5 (continued from previous page)				
ANSWER NOTES					
(ix)	$\frac{0.00849}{0.0512} = 6.03 \approx 6$	n = number of moles of Carbon atoms in 1 mole of the alkane			
	n = 6	0.00849 moles of Hydrocarbon burn to produce 0.0512 moles of CO ₂ .			
		1 mole of Hydrocarbon burns to produce $\frac{0.00849}{0.0512}$ moles of CO ₂ .			
		$\frac{0.00849}{0.0512} = 6.03 \approx 6$			
		Number of moles of CO ₂ formed = number of moles of C present in 1 mol of the hydrocarbon			
		n = 6			
		The hydrocarbon is C_6H_{14} – hexane.			
	BACK TO QUICK ACCESS GRID				
www.igcsechemistryanswers.com					

©EDUCATALYST

Q6 (continued from previous page)		
	ANSWER	NOTES
d	Some of the Copper may not adhere to the cathode. It may fall off causing a decrease in mass.	
e (i)	The mass of anode decreases.	The Copper anode itself gets oxidised forming Cu ²⁺ ions which enter the solution.
(ii)	Initial mass of Anode = 4.00 g Decrease in mass of Anode after 15 minutes = 0.57 g Mass of Anode after 15 minutes = 4.00 – 0.57 = 3.43 g	After 15 minutes: Increase in mass of cathode = decrease in mass of anode
BACK TO QUICK ACCESS GRID		
www.igcsechemistryanswers.com		

END OF DOCUMENT